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ABSTRACT: We report a molecular beam study of the effect of vibrational excitation on the
physisorption of methane on a Pt(111) surface. Our experiments use a continuous molecular beam
of CH,, prepared in its antisymmetic C—H stretch mode v; by infrared laser pumping via rapid
adiabatic passage. Physisorbed CH,(ads) is detected on a Pt(111) surface by reflection absorption
infrared spectroscopy. At a surface temperature of 77 K, the desorption lifetime of CH,(ads) is
observed to be 0.4 + 0.2 s. Trapping probabilities for the incident CH, are measured by the King and
Wells beam reflectivity method with and without vibrational excitation. Vibrational excitation of the
incident CH, with one quantum of v vibration does not produce a measurable effect (less than 0.2%
change) on the trapping probability, in sharp contrast to the dissociative chemisorption process. The
effect of resonant vibrational excitation of physisorbed CH,(ads) on its dissociation rate was also

investigated.

H INTRODUCTION

The trapping of a gas-phase molecule into a weakly bound
physisorbed state on a solid surface plays a central role in
condensation processes as well as the initial step of
chemisorption reactions via a precursor-mediated mechanism.
It is well-established that the trapping probability decreases
with increasing incident translational energy because any excess
energy beyond the physisorption well depth needs to be
transferred to surface degrees of freedom during the surface
impact for trapping to occur. In the simplest case, the initial
trapping probability depends only on the incident translational
energy normal to the surface (normal energy scaling with E-
cos*) as described by the Baule model." Madix et al.>* have
measured trapping probabilities for Ar and CH, on Pt(111)
and concluded that in these two systems normal energy scaling
is obeyed.

The role of vibrational excitation of the incident molecule on
the physisorption (trapping) probability is not yet well-
understood, and experimental results reported to date in the
literature differ for different molecules and surfaces. Sibener et
al.* studied the condensation coefficients of molecular beams of
CCl, and SF, on their respective condensed phases at cryogenic
temperatures. They observed a (small) decrease in the trapping
probability with increasing rotational and vibrational excitation
at low incident translational energy consistent with simple
models of the trapping process.” On the other hand, Wodtke et
al.f studied the trapping of the diatomic NO in v = 0 and 2 on a
Au(111) surface at 300 and 480 K Using quantum state
resolved detection of surface scattered NO by resonant
multiphoton ionization they concluded that there was no
measurable difference between the trapping probabilities for
NO(v = 0) and NO(v = 2) for incident kinetic energies in the
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range of 0.1—0.75 eV. The fact that trapping was found to be
insensitive to NO vibrational states was interpreted as being
due to weak mechanical coupling between the high-frequency
NO stretch and the low-frequency lattice vibrations of the
Au(111) crystal. Bisson et al.” studied the chemisorption of
SiH, on a Si(100) surface and found that vibrational excitation
of the incident SiH, increased the dissociation probability both
in the direct and the precursor-mediated pathway, which
implies that trapping into the precursor state is not significantly
reduced by SiH,(v = 2) excitation. Hundt et al.® studied the
effect of vibrational excitation on the sticking of water on ice
and observed no detectable difference in the trapping
probability between water molecules without vibrational
excitation and those with one quantum of antisymmetric
stretch excitation.

We have previously combined infrared laser pumping in a
molecular beam for reactant preparation with surface analysis
techniques for product detection to perform quantum state
resolved reactivity studies of methane dissociation on Ni and Pt
surfaces.” Here, we report the application of the same methods
to study the effect of vibrational excitation in the physisorption
of CH, on a Pt(111) surface both for vibrational excitation of
the incident CH, and the physisorbed CH,(ads). The result
reveals that the role of vibrational energy in the physisorption
process is substantially different from that in the dissociative
chemisorption process.
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B EXPERIMENTAL SECTION

The experimental setup (Figure 1) is described in detail in a
separate publication.'® Briefly, we use a triply differentially
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Figure 1. Schematic of the gas—surface experimental setup combining
IR pumping of incident gas-phase reactants or adsorbed surface-bound
species (dashed lines) with in situ RAIRS detection of adsorption
products.

pumped molecular beam source for state-specific infrared laser
preparation of methane molecules incident on a single crystal
surface in an ultrahigh vacuum (UHV) surface science chamber
to measure state-resolved sticking coefficients. Adsorbed
species produced by the incident molecular beam can be
detected online by a Fourier transform infrared spectrometer
(FTIR, Bruker Vertex V70) using reflection absorption infrared
spectroscopy (RAIRS). Surface-scattered species are detected
by a quadrupole mass spectrometer.

In the experiment described here, a continuous molecular
beam of methane (CH, 99.9995%), generated by a 30 ym
diameter pinhole nozzle, collided with a single crystal surface Pt
(111) at normal incidence angle with an average translational
energy of 9 kJ/mol.

A tunable, single-mode, continuous-wave optical parametric
oscillator (cw-OPO, Lockheed Martin Acculight Argos 2400-

SF) was used to excite either the incident CH, molecules in the
molecular beam before surface impact or the physisorbed CH,
molecules on the Pt(111) surface. For rovibrational state-
specific excitation of the gas-phase CH, reactants, we locked
the OPO idler frequency to a Dopper-free Lamb-dip (1 MHz
line width)'" detected via IR absorption in a room-temperature
gas cell filled with about 50 pbar of methane. Suitable focusing
of the OPO IR beam (typically 1 W single mode) onto the
molecular beam leads to complete population transfer between
the initial and final rovibrational states connected by the IR
radiation via rapid adiabatic passage.'” A room-temperature
pyroelectric detector was used to detect the vibrationally
excited CH, and to characterize the excited fraction in the
molecular beam. For the vibrational excitation of the adsorbed
CH, molecules on the Pt(111) surface, we aligned the OPO
beam at 45° incidence onto the Pt(111) surface and tuned the
OPO idler frequency to the band center of RAIRS absorption
lines for the physisorbed CH,.

For sticking coefficient measurements by the molecular beam
reflectivity method of King and Wells,'® a mica beam flag (10 X
10 mmz) is used to block/unblock the molecular beam in the
UHV chamber about 50 mm from the Pt(111) surface.

A Pt single crystal (10 mm in diameter, 2 mm thick) cut
within 0.1° of the (111) direction was obtained from Surface
Preparation Laboratories, Leiden. The Pt(111) surface was
cleaned by sputter—anneal cycles, typically 10—15 min Ar"
sputtering followed by 2 min annealing at T, = 1200 K under a
vacuum better than § X 107!° mbar, until no contamination
(carbon, oxygen, etc.) could be detected by Auger electron
spectroscopy. The Pt(111) surface was mounted between
0.35 mm diameter tungsten wires that are clamped at either end
to a pair copper cold fingers in contact with a liquid nitrogen
reservoir.'* Heating of the Pt(111) surface was accomplished
by passing up to 25 A of current through the W wires using a
regulated dc current supply connected to a PID temperature
controller. Cooling was done via thermal contact through the
W wires with the liquid nitrogen reservoir. Without heating the
surface temperature dropped from 300 K to a final equilibrium
temperature of 87 K in 10 min. Sample temperatures as low as
77 K could be achieved by pumping on the liquid N, reservoir
or by bubbling Helium gas through the liquid N, for cooling by
Helium transpiration.”> The surface temperature was measured
by a Chromel—Alumel (K-type) thermocouple inserted into a
@ 0.5 mm hole in the side of the sample.
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Figure 2. (a) RAIRS detection of physisorbed methane, CH,(ads), during exposure of the Pt(111) surface, T, = 77 K, to a molecular beam of CH,
with incident translational energy E,,; = 9 kJ/mol. (b) Variation of RAIRS CH,(ads) peak intensity of CH, (antisymmetric C—H stretch) when the
molecular beam was switched on/off in 2 s intervals. Fitting an exponential decay to the data points indicates a desorption time of 0.25 + 0.07 s.
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B RESULTS

Figure 2a shows a RAIRS spectrum recorded during exposure
of the Pt(111) surface at T, = 77 K to a molecular beam of CH,
(Eyans = 9 KJ/mol; (E) = 0.1 kJ/mol; incident CH, flux,
0.8 ML/s). We observe absorption bands at 2997 and 2882
cm™' corresponding to the antisymmetric (v3) and symmetric
(v;) C—H stretch normal modes of physisorbed CH,'
respectively, which are red-shifted relative to the gas phase
frequencies of CH, (v3 = 3019 cm™" and v; = 2916 cm™"). The
symmetric C—H stretch mode v, which is infrared-inactive for
CH, in the gas phase, is observed in the RAIRS spectrum
because of the reduced symmetry of the adsorbed CH,. The
line shape of the absorption peak due to the v; fundamental of
CH,(ads) is Lorenzian with a full width half-maximum width of
11.4 cm™". This width includes contributions due to vibrational
energy relaxation, vibrational dephasing (due to substrate
phonons), and possibly inhomogeneous broadening due to
different adsorption sites and isotopes. The relative importance
of the different processes cannot be determined from our data,
which was obtained at a single surface temperature. We can set
a lower limit for the vibrational lifetime of about 440 fs if the
line width was solely determined by the vibrational energy
relaxation from the adsorbate to the substrate.

When the molecular beam is blocked from reaching the
Pt(111) surface, the CH, bands disappear within less than 1 s
from the RAIRS spectrum, indicating the transient nature of
physisorption of CH, on Pt(111) at T, = 77K, consistent with
peak desorption temperatures for CH, from Pt(111) in the
range of 66—73 K for the first layer and near 50 K for the
overlayer.17_19 Exposure of the Pt(111) surface to a continuous
molecular beam of CH, leads to an equilibrium between
adsorption and desorption with a coverage that depends on
incident beam flux and surface temperature.

To measure the CH, desorption lifetime, we performed time-
resolved RAIRS measurements with the highest time-resolution
(0.1 s/scan at 4 cm™' spectral resolution) of our FTIR
instrument to record the time evolution of the physisorbed
methane absorption signal when the molecular beam was
switched on and oft by manually opening and closing a valve in
the second stage of the molecular beam source chamber. (The
valve closing time of 5 ms was significantly faster than the
desorption time scale.) As shown in Figure 2b, the methane
physisorption signal increased to a constant level within about
0.3 s as the molecular beam exposure was turned on and
decayed with a time constant of 0.25 + 0.07 s as the molecular
beam exposure was stopped. The decay time was determined
by fitting a single exponential decay to the falling edge of the
RAIRS signal. Note that the 0.1 s time-resolution of the FTIR
acquisition was insufficient to accurately follow the fast
transient methane trapping and desorbing processes; mass
spectrometric measurements with higher time resolution using
the King and Wells method"? will be presented below.

For an equilibrium between adsorption and desorption rate,
we expect the methane coverage to grow with increasing
incident methane flux at constant surface temperature. Indeed,
as shown in Figure 3, the CH,(ads) RAIRS signal and therefore
the surface coverage increased as the incident methane flux was
increased at a fixed surface temperature T, =77.0 + 0.4 K. Note
that the RAIRS signal approaches a constant level with
increasing incident flux, indicating the saturation of the first
layer of CH,(ads) on Pt(111). The saturation coverage for CH,
on Pt(111) has previously been reported as 0.33 ML'® where
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Figure 3. RAIRS signal versus incident CH, molecular beam flux
demonstrating the formation of a saturation coverage layer of
CH,(ads) on Pt(111). The inset shows how the RAIRS absorption
peak area (antisymmetric C—H stretch) converges to the saturation
coverage with increasing incident flux. T, = 77.0 + 0.4 K. The error bar
indicates the standard deviation of four measurements. The incident
CH, flux was varied by changing the nozzle stagnation pressure
between 0.3 and 1.6 bar.

1 ML corresponds to 1.5 X 10" atoms/cm?” for the Pt(111)
surface.

We measured the initial trapping probability as well as the
desorption lifetime (z) of CH, on Pt(111) at T, =77 K using
the King and Wells method." Figure 4 shows the CH,, partial

~
1%
5

=
=
T 20
E
g
25x10° 5"
X g
Flag close ~
- 0
=z 20 Tine [5
s | orofsinaes
& 1.5
£ FI;
g 10 ap [ O
3 0 Sy = AP /AP, =0.2
[%)
= 051
o
MB on MB off
0.0 Il | | |
0 20 40 60 80

Time [s]

Figure 4. King and Wells beam reflectivity measurements of the initial
trapping probability (S,) and desorption lifetime (z) for CH,
physisorption on Pt(111) at T, = 77 K. The solid line in the inset is
a fit of the data points with a single exponential decay function.

pressure variation, detected by a quadrupole mass spectrometer
in the UHV chamber tuned to m/z = 16, when the King and
Wells beam flag is opened and closed. The initial trapping
probability is determined to be Sy = 0.2 from the relative
pressure drop when the flag is opened and the molecular beam
impinges on the clean Pt(111) surface. The subsequent partial
pressure rise indicates the approach to equilibrium between
CH, adsorption and desorption rate with increasing methane
coverage. When the King and Wells flag blocks the molecular
beam from reaching the surface there is a rise in the 16 amu
partial pressure signal due to desorption of the layer of
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physisorbed CH, on the Pt(111) surface. We determine the
desorption lifetime to be 7 = 04 s at T, = 77 K from an
exponential fit to the QMS data in reasonable agreement with
the 0.25 s from RAIRS measurements. On the basis of the
desorption kinetics, 7 = vy" exp[D/(RT)], where vy = 1 X 10"
Hz is the pre-exponential factor, D = 18.3 kJ/mol" the
physisorption well depth of CH, on Pt(111), and T, (K) the
surface temperature. We calculate 7 = 0.27 s at T, =77 K,
consistent with our measured lifetime.

Effect of C—H Stretching Excitation on the Trapping
of CH,; on Pt(111). To probe for the effect of vibrational
excitation on the trapping probability of CH, on Pt(111), we
compare the CH,(ads) coverage (detected via the RAIRS
signal) resulting from identical incident beams of CH, with and
without laser preparation of the v, state.

Adiabatic passage via IR laser pumping was used to excite
CH, in the molecular beam via the v;—R(1) transition at
3038.49 cm™! to the antisymmetric C—H stretch normal mode.
Bleaching experiments described previously”” using a second IR
laser that excites from the same initial state into a different final
state showed that 95% of the CH, molecules were transferred
from the initial state (v = 0, ] = 1) to the excited state (v=1,] =
2). We measured the relative population of the initial ] = 1 state
to be 30% by comparing the pyroelectric detector signal
obtained for excitation out of different initial rotational states
populated in the molecular beam. Combining these numbers,
we estimated that about 28% of the CH, molecules in the beam
incident on the Pt(111) surface were excited to the v=1, ] =2
state.

To detect the influence of vibrational excitation on the
trapping probability it was essential to work under conditions
where the CH,(ads) coverage on the Pt(111) surface was not
saturated; otherwise a change in trapping probability due to the
vibrational excitation may not lead to a change in coverage
detected by the RAIRS signal. We therefore reduced the
incident CH, flux to less than 60% of the flux needed to achieve
the saturation coverage shown in Figure 3.

We then recorded RAIRS spectra of the Pt(111) surface at
T, = 77 K exposed to a molecular beam of pure CH, with and
without IR laser pumping of the incident CH,. The average
incident translational energy in both experiments was
E, = 9 kJ/mol. Without IR laser pumping the thermal
vibrational energy content of the molecular beam is estimated
to be (E,) = 0.1 kJ/mol. IR pumping of the v; vibration adds
36 kJ/mol of vibrational energy. Figure 6 shows a comparison
of the resulting RAIRS spectra obtained under identical
molecular beam conditions with and without laser excitation.
We detect no measurable change in the CH,(ads) coverage
upon excitation of 28% of the incident CH, to the v;
vibrational state, which indicates that the addition of 36 kJ/
mol vibrational energy in the v; mode causes no measurable
effect in the trapping probability. We obtain an upper limit for
the effect from the change of relative peak area (2916—3159
cm™') between the laser-on (0.01788 absorption unit cm™)
and laser-off (0.01785 absorption unit cm™) RAIRS spectrum
to be less 0.2%.

Effect of C—H Stretching Excitation of Physisorbed
CH,; on Pt(111). We also used RAIRS to probe for effects of
vibrational excitation of the physisorbed CH,(ads) on the
Pt(111) surface. Upon absorption of an IR photon, a
physisorbed CH, molecule might either react with the metal
surface and dissociate, or desorb from the Pt(111) surface, or
simply dissipate its vibrational energy into the metal surface
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Figure S. Laser power dependence of the pyroelectric detector signal
detecting the amount of v; excited CH,(;) in the molecular beam
prepared via IR pumping via the R(1) transition.
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Figure 6. Comparison of RAIR spectra of CH,(ads) on Pt (111) at
T, = 77 K resulting from an incident molecular beam of methane with
(solid line) and without laser excitation (dashed line) of v; mode. Both
traces were acquired under identical molecular beam conditions as
given in Figure S. The calculated difference spectrum shows no change
in the coverage of CH,(ads) due to v excitation of approximately 28%
of the incident methane indicating that v; excitation has no detectable
effect on the trapping probability on Pt(111) at T, = 77 K.

leading to surface heating. To probe for these processes, we
irradiated the physisorbed methane on the Pt(111) surface with
cw infrared light from the OPO. The incident IR was p-
polarized in order to excite the surface vibrations efficiently
according to the metal surface-selection rule.”' The laser power
was chosen low enough (100 mW, beam 3.8 mm diameter) to
minimize surface heating to avoid thermal desorption and
maintain a significant coverage of physisorbed CH, as
monitored by RAIRS. The OPO frequency was tuned to
overlap with either the antisymmetric (v3) or the symmetric
(v;) C—H stretch of the physisorbed CH, in the RAIRS
spectrum, as shown in Figure 7.

Figure 8 compares RAIR spectra taken before and after
35 min of IR irradiation of a layer of physisorbed methane
generated by continuous exposure of the Pt(111) at 77 K to an
incident beam of CH,. The data shows that IR irradiation of
CH,(ads) on Pt(111) yields no detectable methyl (CH,)
coverage resulting from vibrationally activated dissociation via
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Figure 7. Tuning the OPO idler frequency to excite either the

symmetric C—H stretch v, or the antisymmetric C—H stretch mode v

of CH,(ads). (a) RAIRS signal due to the C—H stretch modes v, and

5 of CH,(ads). (b) IR excitation of the v; mode. Scattered IR light

used for excitation of CH,(ads) is detected as the off-scale peaks

overlapping the RAIRS signal of either the v; mode (b) or the v; mode
c).
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Figure 8. Probing for evidence of vibrational-induced dissociation of
physisorbed CH, on Pt(111): (a) RAIRS signal of physisorbed
CH,(ads) on Pt(111) at 77 K created by exposure to a molecular
beam of pure CH,; (b) RAIRS scan showing the absence of any
chemisorbed methyl (CH;(ads)) products after 35 min IR irradiation
(~1 W/cm?) on a layer of CH,(ads); (c) RAIRS scan of chemisorbed
methyl (CHs(ads)) on Pt(111) produced by the dissociative
chemisorption of CH,, displayed as a reference.

CH,(ads, v3) — CHs(ads) + H(ads). Any adsorbed methyl
groups CH;(ads) would be detected as a peak near 2883 cm™,
as shown in trace ¢ of Figure 8, which was recorded following
deposition of a high-energy beam of CH, on the Pt(111)
surface. Excitation of the v, band of physisorbed CH, also
caused no measurable effect (data not shown). We can
therefore exclude vibrationally activated dissociation of the
physisorbed CH, via v5 or v, excitation as a feasible process.
For the vibrational-induced desorption of physisorbed CH,
on Pt(111), as shown in Figure 7, a band area decrease of about
30% for the v, band and 44% for the v; band in the RAIRS
spectra was observed upon the surface vibrational excitation
relative to that without excitation. We believe the decreases
were most likely due to the heating effect during surface IR
irradiation. For better measurements, the surface needs to be
cooled to even lower temperatures so that the direct laser

heating effect is negligible for the trapping probability of CH,
on Pt(111).

B DISCUSSION

Our experiments show that v; excitation of CH, adding
36 kJ/mol of vibrational energy to the incident gas-phase
methane molecules has no measurable effect on the trapping
probability into the physisorbed state on Pt(111) with a well
depth of ~18 kJ/mol."” This behavior stands in sharp contrast
to the chemisorption process in which the dissociative sticking
coefficient is strongly enhanced by v; excitation as well as for
other vibrations. In CH, chemisorption, the v; vibrational
energy assists the incident molecules to surmount the reaction
barrier and increases the reactivity by up to several orders of
magnitude, resulting in vibrationally mode- and bond-specific
dissociation.”*”** While one might expect that vibrational
excitation reduces or suppresses the trapping probability in the
shallow physisorption well, our experiments show that
vibrational energy appears to play the role of a spectator in
the trapping event.

A similar insensitivity of trapping to vibrational excitation was
observed in several previous studies for different molecules on a
range of surfaces including metals, semiconductors, and
insulators. Wodtke et al.® found that 44 kJ/mol vibrational
energy in NO(v = 2) had no measurable effect on the trapping
of NO on Au(111). Bisson et al.” reported that the dissociative
chemisorption of SiH, on Si(100) is activated by Si—H
stretching overtone excitation (52 kJ/mol) for both a direct and
a precursor-mediated pathway, implying that vibrational
excitation does not inhibit trapping of SiH, on Si(100) in the
precursor-mediated pathway. Recently, Hundt et al.® observed
that OD-stretch (34 kJ/mol) excitation of the incident heavy
water D,O molecules caused no significant change in the
sticking probability of D,O on the D,O-ice surface.

Trapping of molecules into the physisorbed state requires
dissipation of a sufficient amount of incident translational
energy of motion along the surface normal so that the scattered
molecules are unable to escape the physisorption well. Excess
translational energy can strongly suppress the trapping
probability of CH, and other alkenes at metal surfaces.”* For
example, the trapping probability of CH, on Pt(111) at 50 K is
suppressed from 0.7 to almost zero as the incident normal
translational energy is increased from 3 to about 20 kJ/mol.”
Vibrational energy of the incident molecule should influence
trapping if sufficient coupling exists between the vibrational and
translational degrees of freedom (V-T coupling) during the
molecule—surface collision event. However, molecular dynam-
ics simulations have shown that mainly low-frequency bending
and rotation motions rather than high-frequency stretching
modes are involved in the V-T coupling during the colliding of
CH, molecules with Pt(111) surface.”* This is consistent with
the experimental observation reported by Sibener and Lee:*
thermal excitation of the rotational and low-frequency vibra-
tional degrees of freedom in a beam of CCl, or SF4 was found
to decrease the trapping probability on its correspondent
condensed phases.

In fact, on the basis of the principle of detailed balance, one
might have predicted the lack of a vibrational effect in trapping
from previous unsuccessful attempts to probe for the direct
vibrational-induced desorption of physisorbed molecules from
insulator” and metal®® surfaces. The measurements have
shown negligible desorption yields and a lack of isotope
selectivity. For example, a vibration-induced desorption study”

dx.doi.org/10.1021/jp5064897 | J. Phys. Chem. C XXXX, XXX, XXX—XXX



The Journal of Physical Chemistry C

of an adsorbed mixture of CH, and CD, on NaClI(100) showed
that both isotopologues desorbed simultaneously from the
surface upon vibrationally resonant excitation of the internal
vibrational modes of either physisorbed CH, or CD,,. The lack
of isotope selectivity in addition to the observation of a laser
fluence threshold for the desorption yield suggests a vibrational
resonant heating mechanism in which the substrate temper-
ature is raised because of vibrational energy transfer from
internal adsorbate vibrations to surface vibrations (phonons)
leading to thermal desorption. This lack of direct vibrationally
induced desorption is consistent with the insensitivity of
trapping to vibrational excitation observed here, which together
suggest that the high-frequency C—H stretching vibrational
motion is a spectator in the direct trapping—desorbing
processes of methane at the Pt(111) surface.

Our unsuccessful attempts to achieve vibrationally induced
dissociation of physisorbed CH, on Pt(111) might be explained
by the fact that 36 kJ/mol vibrational energy added via one-
quanta excitation of the C—H stretching is insufficient to
surmount the ~90 kJ/mol”” dissociation barrier, calculated for
the direct dissociation process. However, if a precursor-
mediated pathway exists, the physisorbed methane has
sufficient time to explore the PES and find pathways with
significantly lower reaction barrier for example on defect sites.
Alternatively, fast vibrational energy transfer from the
physisorbed molecule to electron—hole pair excitations of the
metal surface may effectively outcompete the dissociation
process. To further investigate these possibilities, we will
perform trapping and dissociation measurements for higher
vibrationally excited states via excitation of overtone and
combination bands (e.g, 2v; and v; + v3).

B CONCLUSIONS

State-resolved measurements of CH,, physisorption on Pt(111)
at T, = 77 K show that one quantum of v; antisymmetric C—H
stretching excitation has no detectable effect (<0.2% change)
on the CH, trapping probability. Vibrational excitation of
physisorbed CH, to the symmetric or antisymmetric C—H
stretch modes v, and v; does not induce dissociation on the
Pt(111) surface. On the basis of similar observations for
trapping of other molecules on metal, semiconductor, and
insulator surfaces as well as the lack of experimental evidence
for vibrationally resonant desorption, we suggest that the
absence of vibrational effects is due to a lack of coupling
between the internal vibrational degrees of freedom and the
desorption coordinates. Measurements with multiquantum
vibrational excitation (e.g, overtone excitation) may provide
further insight into the role of vibrational excitation in
physisorption. Comparing Wodtke’s experiments® to their
theory, Tully and co-workers were able to reproduce the
experimental data for NO(v = 0) and NO(v = 2) trazpping on
Au(111) with electronically nonadiabatic theory.” These
simulations predict the trapping probability to be strongly
reduced for highly vibrational excited state (v = 15) because of
the highly nonadiabatic behavior, i.e., vibrational energy transfer
into electronic excitations. On the other hand, simulations
assuming electronic adiabaticity predict that the trapping
probability should increase with increasing vibrational energy
because of the increasing bond length (or transient dipole)
which results in an increasing average binding energy of NO at
the surface. Therefore, experiments with multiquantum vibra-
tional excitation experiments could be useful for detecting
evidence for electronic nonadiabaticity in the transfer of

vibrational energy between methane at transition-metal
surfaces.
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